Dept. Math, Hokkaido Univ. EPrints Server

Diffused interface with the chemical potential in the Sobolev space

Preprint Series # 714
Tonegawa, Yoshihiro Diffused interface with the chemical potential in the Sobolev space. (2005);

[img]PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
213Kb

Abstract

We study a singular perturbation problem arising in the scalar two-phase field model. Given a sequence of functions with a uniform bound on the surface energy, assume the Sobolev norms $W^{1,p}$ of the associated chemical potential fields are bounded uniformly, where $p>\frac{n}{2}$ and $n$ is the dimension of the domain. We show that the limit interface as $\e$ tending to zero is an integral varifold with the sharp integrability condition on the mean curvature

Item Type:Preprint
Subjects:00-xx GENERAL
ID Code:915