On small amplitude global solutions for the nonlinear Klein-Gordon equation

Jun Kato (Nagoya University)

This talk is based on the joint work with Tohru Ozawa (Hokkaido University). In this talk, we consider the Cauchy problem of the quadratic nonlinear Klein-Gordon equation in two space dimensions,

\[\partial_t^2 u - \Delta u + u = Q(u, \partial u), \quad (t, x) \in \mathbb{R} \times \mathbb{R}^2, \]

\[u(0, x) = u_0(x), \quad \partial_t u(0, x) = u_1(x), \quad x \in \mathbb{R}, \]

where \(\partial = (\partial_t, \partial_1, \partial_2) \), \(Q \) is the quadratic nonlinearity in \(u \) and \(\partial u \).

There are many studies concerning the global existence and asymptotic behavior of solutions for nonlinear Klein-Gordon equations. Let \(n \) be the spatial dimensions. When \(n \geq 5 \), Klainerman-Ponce [5] and Shatah [8] showed that the Cauchy problem (1)-(2) has the unique global solution for small initial data and the solution asymptotically approaches to the free solution of the linear Klein-Gordon equation as \(t \to \infty \). The proofs in [5] and [8] are based on the \(L^p - L^q \) estimate of the solution to the linear Klein-Gordon equation.

When \(n \leq 4 \), the \(L^p - L^q \) estimate does not provide us a sufficient time decay to construct global solutions. To overcome this difficulty, Klainerman [4] introduced the invariant Sobolev space with respect to the generators of the Lorentz group and showed the existence of global solution to (1)-(2) when \(n = 3, 4 \). Independently, Shatah [9] introduced the method of the normal forms, which is the extension of the Poincaré’s theory of normal forms for the ordinary differential equations to the nonlinear Klein-Gordon equations, and showed the existence of global solution to (1)-(2) when \(n = 3, 4 \).

When \(n = 2 \), Georgiev-Popivanov [2] and Kosecki [3] showed the existence of global solution provided that the nonlinearity in (1) is the special form. The general nonlinearities are treated by Simon-Taflin [10] and Ozawa-Tsutaya-Tsutsumi [7]. In particular, the proof in [7] is based on the method of normal forms and the decay estimate due to Georgiev [1], and requires the following conditions on the initial data other than the smallness,

\[u_0 \in H^{k+16,k+15}(\mathbb{R}^2), \quad u_1 \in H^{k+15,k+15}(\mathbb{R}^2), \quad k \geq 21, \]

where \(H^{m,s} \) denotes the weighted Sobolev space whose norm is defined by

\[\| f \|_{H^{m,s}} = \|(1 + |x|^2)^{s/2}(1 - \Delta)^{m/2} f \|_{L^2}. \]
The purpose of this talk is to give a simple proof and to relax the condition of the initial data for the existence of global solutions to (1)-(2) by using the endpoint Strichartz estimates in mixed norms on the polar coordinates. Such estimates for the wave and the Klein-Gordon equation in three space dimensions are introduced by Machihara-Nakamura-Nakanishi-Ozawa in [6].

References

